Hallo Gunnar Bittersmann,

Ein regulärer Ausdruck, der eine durch 4 teilbare Zahl angibt, sieht also so aus:
[048]|[0-9]*([02468][048]|[13579][26])

[02468][048] | [13579][26] kann man sich ohne Hilfsmittel gut beim Spazierengehen überlegen.

[0-9]* ist trivial, [048] kommt dann ins Spiel, wenn man die Sonderfälle beachten möchte und den Automaten damit auf drei Zustände reduziert.

Den Gipfel der Faulheit erreichte @Matthias Apsel, der auch die geraden Zahlen in zwei benannte Klassen {0, 4, 8} und {2, 6} einteilte und dann jeden Pfeil mit nur jeweils einem Buchstaben beschriftete.

Aber dafür hatte ich sprechende Zustandsnamen.

die Zustände heißen

  • R0 für "Einerziffer hat bei Division durch 4 den Rest 0"
  • R2 für "Einerziffer hat bei Division durch 4 den Rest 2"
  • U für "Einerziffer ist ungerade"

das Eingabealphabet

  • n ∈ N = {0; 4; 8}
  • z ∈ Z = {2; 6}
  • u ∈ U = {1; 3; 5; 7; 9}

endlicher Automat
(Grafik erstellt mit FLACI)

Bis demnächst
Matthias

-- Pantoffeltierchen haben keine Hobbys.
freiwillige Angabe, für jeden sichtbar
freiwillige Angabe, für jeden sichtbar
freiwillige Angabe, für jeden sichtbar

Vorschau (Nachricht wird im Forum „SELF-Forum“ erscheinen)

  • Keine Tag-Vorschläge verfügbar
  • keine Tags vergeben

abbrechen

0105

Informatik zum Jahresanfang

  1. 0
    1. 0
  2. 0
  3. 0

    Informatik zum Jahresanfang – Zusatzaufgabe

    1. 0
      1. 0
        1. 0
          1. 0
            1. 0
    2. 0

      Informatik zum Jahresanfang – Auflösung der Zusatzaufgabe für 8

      1. 0
        1. 0
          1. 0
            1. 0
  4. 0
    1. 0
  5. 0

    Informatik zum Jahresanfang – Auflösung für 4

    1. 0
      1. 0
        1. 0
          1. 0
    2. 0
  6. 0

    Informatik zum Jahresanfang – noch mehr Teiler

    1. 0
      1. 0
        1. 0
          1. 0
          2. 0

            Informatik zum Jahresanfang – Auflösung für 7

    2. 0

      Informatik zum Jahresanfang – noch mehr Teiler - Spoiler

      1. 0
        1. 0
          1. 0
            1. 0
              1. 0
                1. 0
                  1. 0
        2. 0
          1. 0
            1. 0
            2. 0
              1. 0
                1. 0
        3. 0
          1. 0
            1. 0
              1. 0
                1. 0
            2. 0
        4. 0

          Informatik zum Jahresanfang – Auflösung für n

          1. 0
            1. 0
              1. 0
                1. 0
          2. 0
            1. 0
              1. 0
    3. 0
      1. 0
        1. 0
        2. 0
          1. 0
      2. 0
    4. 0

      Informatik zum Jahresanfang – Auflösung für 3, 6 und 15

      1. 0

        Informatik zum Jahresanfang – Auflösung für 9

        1. 0
          1. 0
        2. 0
  7. 0

    Informatik zum Jahresanfang – noch eine Variation

    1. 0
      1. 0
        1. 0
          1. 0
            1. 0
              1. 0
              2. 0
                1. 0
              3. 0
                1. 0
                  1. 0
                    1. 0
                      1. 0
                        1. 0
                          1. 0
                            1. 0
                            2. 0
                              1. 0
                            3. 0
    2. 0
      1. 0
        1. 0
          1. 0
            1. 0
              1. 0
                1. 0
                  1. 0
                    1. 0
                    2. 0
                    3. 0
                2. 0
                  1. 0
    3. 0
      1. 0
  8. 2
  9. 1