@@Gunnar Bittersmann

Das Bild zeigt einen endlichen Automaten, der sich bei der Eingabe einer Ziffernfolge nur dann im Endzustand (dargestellt durch doppelte Linie) befindet, wenn die dadurch eingegebene Zahl durch 2 teilbar ist. (Führende Nullen sollen erlaubt sein.)

Durch geringfügige Modifikation wird daraus ein Automat, der durch 5 teilbare Zahlen erkennt:

Und einer, der durch 10 teilbare Zahlen erkennt:

Und wenn man einen 2er und einen 10er hinternander setzt, erhält man einen Automaten, der durch 20 teilbare Zahlen erkennt. Hier in der dedlfixschen Gesichtsform:

 

So, was haben wir denn jetzt? Teilbarkeit durch 2, 4, 5, … Moment, was ist mit der 3?

Hier die Aufgabe für alle, die mit der 8 fertig sind oder mit der 8 fertig sind: 😉

Baue einen endlichen Automaten, der sich nur dann in einem Endzustand befindet, wenn die eingegebene Zahl durch 3 teilbar ist.

Und wenn man den hat, hat man auch durch geringfügige Modifikation den für 6. Und den für 15.

LLAP 🖖

-- „Wer durch Wissen und Erfahrung der Klügere ist, der sollte nicht nachgeben. Und nicht aufgeben.“ —Kurt Weidemann

Folgende Nachrichten verweisen auf diesen Beitrag:

freiwillige Angabe, für jeden sichtbar
freiwillige Angabe, für jeden sichtbar
freiwillige Angabe, für jeden sichtbar

Vorschau (Nachricht wird im Forum „SELF-Forum“ erscheinen)

  • Keine Tag-Vorschläge verfügbar
  • keine Tags vergeben

abbrechen

0105

Informatik zum Jahresanfang

  1. 0
    1. 0
  2. 0
  3. 0

    Informatik zum Jahresanfang – Zusatzaufgabe

    1. 0
      1. 0
        1. 0
          1. 0
            1. 0
    2. 0

      Informatik zum Jahresanfang – Auflösung der Zusatzaufgabe für 8

      1. 0
        1. 0
          1. 0
            1. 0
  4. 0
    1. 0
  5. 0

    Informatik zum Jahresanfang – Auflösung für 4

    1. 0
      1. 0
        1. 0
          1. 0
    2. 0
  6. 0

    Informatik zum Jahresanfang – noch mehr Teiler

    1. 0
      1. 0
        1. 0
          1. 0
          2. 0

            Informatik zum Jahresanfang – Auflösung für 7

    2. 0

      Informatik zum Jahresanfang – noch mehr Teiler - Spoiler

      1. 0
        1. 0
          1. 0
            1. 0
              1. 0
                1. 0
                  1. 0
        2. 0
          1. 0
            1. 0
            2. 0
              1. 0
                1. 0
        3. 0
          1. 0
            1. 0
              1. 0
                1. 0
            2. 0
        4. 0

          Informatik zum Jahresanfang – Auflösung für n

          1. 0
            1. 0
              1. 0
                1. 0
          2. 0
            1. 0
              1. 0
    3. 0
      1. 0
        1. 0
        2. 0
          1. 0
      2. 0
    4. 0

      Informatik zum Jahresanfang – Auflösung für 3, 6 und 15

      1. 0

        Informatik zum Jahresanfang – Auflösung für 9

        1. 0
          1. 0
        2. 0
  7. 0

    Informatik zum Jahresanfang – noch eine Variation

    1. 0
      1. 0
        1. 0
          1. 0
            1. 0
              1. 0
              2. 0
                1. 0
              3. 0
                1. 0
                  1. 0
                    1. 0
                      1. 0
                        1. 0
                          1. 0
                            1. 0
                            2. 0
                              1. 0
                            3. 0
    2. 0
      1. 0
        1. 0
          1. 0
            1. 0
              1. 0
                1. 0
                  1. 0
                    1. 0
                    2. 0
                    3. 0
                2. 0
                  1. 0
    3. 0
      1. 0
  8. 2
  9. 1