Hallo Rolf B,

Ich bin total perplex, das hatte ich für unmöglich gehalten.

Ja das passt. Um die Restklassen modulo n zu bestimmen, kannst du so vorgehen: Multipliziere die erste Ziffer mit 10 mod n addiere die zweite. Bilde die Restklasse und fahre fort.

Für n > 10 ist 10 mod n = 10, deshalb hatte es letzte Woche mit dem 7er Automaten nicht funktioniert (Stichwort: vorschnell)

Btw. k ≡ n(mod37) schreibt man k ≡ n(37)

Beispiel bestimme den Rest, den 12345 bei Division durch 119 lässt.

1 × 10 + 2 = 12 ≡ 12(119) 12 × 10 + 3 = 123 ≡ 4(119) 4 * 10 + 4 = 44 ≡ 44(119) 44 * 10 + 5 = 445 ≡ 88(119)

Bis demnächst
Matthias

-- Pantoffeltierchen haben keine Hobbys.
freiwillige Angabe, für jeden sichtbar
freiwillige Angabe, für jeden sichtbar
freiwillige Angabe, für jeden sichtbar

Vorschau (Nachricht wird im Forum „SELF-Forum“ erscheinen)

  • Keine Tag-Vorschläge verfügbar
  • keine Tags vergeben

abbrechen

0105

Informatik zum Jahresanfang

  1. 0
    1. 0
  2. 0
  3. 0

    Informatik zum Jahresanfang – Zusatzaufgabe

    1. 0
      1. 0
        1. 0
          1. 0
            1. 0
    2. 0

      Informatik zum Jahresanfang – Auflösung der Zusatzaufgabe für 8

      1. 0
        1. 0
          1. 0
            1. 0
  4. 0
    1. 0
  5. 0

    Informatik zum Jahresanfang – Auflösung für 4

    1. 0
      1. 0
        1. 0
          1. 0
    2. 0
  6. 0

    Informatik zum Jahresanfang – noch mehr Teiler

    1. 0
      1. 0
        1. 0
          1. 0
          2. 0

            Informatik zum Jahresanfang – Auflösung für 7

    2. 0

      Informatik zum Jahresanfang – noch mehr Teiler - Spoiler

      1. 0
        1. 0
          1. 0
            1. 0
              1. 0
                1. 0
                  1. 0
        2. 0
          1. 0
            1. 0
            2. 0
              1. 0
                1. 0
        3. 0
          1. 0
            1. 0
              1. 0
                1. 0
            2. 0
        4. 0

          Informatik zum Jahresanfang – Auflösung für n

          1. 0
            1. 0
              1. 0
                1. 0
          2. 0
            1. 0
              1. 0
    3. 0
      1. 0
        1. 0
        2. 0
          1. 0
      2. 0
    4. 0

      Informatik zum Jahresanfang – Auflösung für 3, 6 und 15

      1. 0

        Informatik zum Jahresanfang – Auflösung für 9

        1. 0
          1. 0
        2. 0
  7. 0

    Informatik zum Jahresanfang – noch eine Variation

    1. 0
      1. 0
        1. 0
          1. 0
            1. 0
              1. 0
              2. 0
                1. 0
              3. 0
                1. 0
                  1. 0
                    1. 0
                      1. 0
                        1. 0
                          1. 0
                            1. 0
                            2. 0
                              1. 0
                            3. 0
    2. 0
      1. 0
        1. 0
          1. 0
            1. 0
              1. 0
                1. 0
                  1. 0
                    1. 0
                    2. 0
                    3. 0
                2. 0
                  1. 0
    3. 0
      1. 0
  8. 2
  9. 1