Tach!

‚Aber Gunnar‘, werdet ihr sagen, ‚Anfangs- und Endzustand müssen doch aufgedröselt sein!‘

„Marty, du musst vierdimensional denken!“ Hier reicht eine weniger, wie dedlfix sagte: „Denk mal dreidimensional.“

Hab ich gemacht und in 3D gezeichnet: Anfangs- und Endzustand befinden sich in der Projektion genau hintereinander und damit überlappen sich auch ihre Verbindungen zu den anderen Zuständen und deren identischen Beschriftungen! 😜 (Die Ausrede konnte ich nicht an andere verschenken, die brauchte ich für mich selber.)

Geht nicht. Wenn es mehrere Ebenen gibt, kann man die nicht durch zeichnerische Projektion eliminieren. An dieser Stelle gibt es keine künstlerische Freiheit. Oder kannst du diesen Automaten bauen, ohne Speicher für einen weiteren Zustand zu verwenden?

dedlfix.

freiwillige Angabe, für jeden sichtbar
freiwillige Angabe, für jeden sichtbar
freiwillige Angabe, für jeden sichtbar

Vorschau (Nachricht wird im Forum „SELF-Forum“ erscheinen)

  • Keine Tag-Vorschläge verfügbar
  • keine Tags vergeben

abbrechen

0105

Informatik zum Jahresanfang

  1. 0
    1. 0
  2. 0
  3. 0

    Informatik zum Jahresanfang – Zusatzaufgabe

    1. 0
      1. 0
        1. 0
          1. 0
            1. 0
    2. 0

      Informatik zum Jahresanfang – Auflösung der Zusatzaufgabe für 8

      1. 0
        1. 0
          1. 0
            1. 0
  4. 0
    1. 0
  5. 0

    Informatik zum Jahresanfang – Auflösung für 4

    1. 0
      1. 0
        1. 0
          1. 0
    2. 0
  6. 0

    Informatik zum Jahresanfang – noch mehr Teiler

    1. 0
      1. 0
        1. 0
          1. 0
          2. 0

            Informatik zum Jahresanfang – Auflösung für 7

    2. 0

      Informatik zum Jahresanfang – noch mehr Teiler - Spoiler

      1. 0
        1. 0
          1. 0
            1. 0
              1. 0
                1. 0
                  1. 0
        2. 0
          1. 0
            1. 0
            2. 0
              1. 0
                1. 0
        3. 0
          1. 0
            1. 0
              1. 0
                1. 0
            2. 0
        4. 0

          Informatik zum Jahresanfang – Auflösung für n

          1. 0
            1. 0
              1. 0
                1. 0
          2. 0
            1. 0
              1. 0
    3. 0
      1. 0
        1. 0
        2. 0
          1. 0
      2. 0
    4. 0

      Informatik zum Jahresanfang – Auflösung für 3, 6 und 15

      1. 0

        Informatik zum Jahresanfang – Auflösung für 9

        1. 0
          1. 0
        2. 0
  7. 0

    Informatik zum Jahresanfang – noch eine Variation

    1. 0
      1. 0
        1. 0
          1. 0
            1. 0
              1. 0
              2. 0
                1. 0
              3. 0
                1. 0
                  1. 0
                    1. 0
                      1. 0
                        1. 0
                          1. 0
                            1. 0
                            2. 0
                              1. 0
                            3. 0
    2. 0
      1. 0
        1. 0
          1. 0
            1. 0
              1. 0
                1. 0
                  1. 0
                    1. 0
                    2. 0
                    3. 0
                2. 0
                  1. 0
    3. 0
      1. 0
  8. 2
  9. 1