@@Matthias Apsel

Hier sieht man auch schön, wann sich ein Automat nicht reduzieren lässt:

Vom Zustand α links oben (nennen wir ihn „Beteigeuze“) kommt man mit , zum Zustand δ rechts im Gürtel (nennen wir ihn „Mintaka“) und mit sowie mit 0 bis 9 in den Nebel (aus dem es kein Entkommen mehr gibt).

Vom Zustand β rechts unten (nennen wir ihn „Rigel“) ebenso; es gilt also δ(α, σ) = δ(βσ) für alle Symbole σ ∈ Σ.

Dennoch kann man die Zustände α und β nicht zu einem zusammenfassen, weil α ein Endzustand ist, β aber nicht.

LLAP 🖖

PS: Ein roter Riese soll ein Endzustand sein? – Da lachen ja die Hühner, äh die Sterngucker.

-- „Wer durch Wissen und Erfahrung der Klügere ist, der sollte nicht nachgeben. Und nicht aufgeben.“ —Kurt Weidemann
freiwillige Angabe, für jeden sichtbar
freiwillige Angabe, für jeden sichtbar
freiwillige Angabe, für jeden sichtbar

Vorschau (Nachricht wird im Forum „SELF-Forum“ erscheinen)

  • Keine Tag-Vorschläge verfügbar
  • keine Tags vergeben

abbrechen

0105

Informatik zum Jahresanfang

  1. 0
    1. 0
  2. 0
  3. 0

    Informatik zum Jahresanfang – Zusatzaufgabe

    1. 0
      1. 0
        1. 0
          1. 0
            1. 0
    2. 0

      Informatik zum Jahresanfang – Auflösung der Zusatzaufgabe für 8

      1. 0
        1. 0
          1. 0
            1. 0
  4. 0
    1. 0
  5. 0

    Informatik zum Jahresanfang – Auflösung für 4

    1. 0
      1. 0
        1. 0
          1. 0
    2. 0
  6. 0

    Informatik zum Jahresanfang – noch mehr Teiler

    1. 0
      1. 0
        1. 0
          1. 0
          2. 0

            Informatik zum Jahresanfang – Auflösung für 7

    2. 0

      Informatik zum Jahresanfang – noch mehr Teiler - Spoiler

      1. 0
        1. 0
          1. 0
            1. 0
              1. 0
                1. 0
                  1. 0
        2. 0
          1. 0
            1. 0
            2. 0
              1. 0
                1. 0
        3. 0
          1. 0
            1. 0
              1. 0
                1. 0
            2. 0
        4. 0

          Informatik zum Jahresanfang – Auflösung für n

          1. 0
            1. 0
              1. 0
                1. 0
          2. 0
            1. 0
              1. 0
    3. 0
      1. 0
        1. 0
        2. 0
          1. 0
      2. 0
    4. 0

      Informatik zum Jahresanfang – Auflösung für 3, 6 und 15

      1. 0

        Informatik zum Jahresanfang – Auflösung für 9

        1. 0
          1. 0
        2. 0
  7. 0

    Informatik zum Jahresanfang – noch eine Variation

    1. 0
      1. 0
        1. 0
          1. 0
            1. 0
              1. 0
              2. 0
                1. 0
              3. 0
                1. 0
                  1. 0
                    1. 0
                      1. 0
                        1. 0
                          1. 0
                            1. 0
                            2. 0
                              1. 0
                            3. 0
    2. 0
      1. 0
        1. 0
          1. 0
            1. 0
              1. 0
                1. 0
                  1. 0
                    1. 0
                    2. 0
                    3. 0
                2. 0
                  1. 0
    3. 0
      1. 0
  8. 2
  9. 1