Hi Benjamin!
Ind.-schritt:
d(k+1) = ((k+1)^2 - 3*(k+1)) / 2 | (k+1)^2 ausmult.
= (k^2 + 2k + 1 - 3k - 1) / 2 | zusammenfassen
= (k^2 + 2k + 1 - 3k - 3) / 2 | Ich will dich ja nicht dämpfen
aber der Fehler ist offentsichtlich :)
= (k^2 - k) / 2 | -k = -3k + 2k
= (k^2 - 3k + 2k) / 2 | 2k/2 = k
= (k^2 - 3k) / 2 + k | (k^2 - 3k) = d(k)
d(k+1) = d(k) + k
MfG H☼psel
--
"It's amazing I won. I was running against peace, prosperity, and incumbency."
George W. Bush speaking to Swedish Prime Minister unaware a live television camera was still rolling, June 14, 2001
Selfcode: ie:% fl:( br:> va:) ls:& fo:) rl:? n4:& ss:| de:] js:| ch:? sh:( mo:) zu:)
"It's amazing I won. I was running against peace, prosperity, and incumbency."
George W. Bush speaking to Swedish Prime Minister unaware a live television camera was still rolling, June 14, 2001
Selfcode: ie:% fl:( br:> va:) ls:& fo:) rl:? n4:& ss:| de:] js:| ch:? sh:( mo:) zu:)