Samoht: Differenzialgleichung

Beitrag lesen

Gudn!

Ich steh grad weng auf der Leitung (lang lang ists her) beim Lösen einer zweidimensionalen parabolischen partiellen Differenzialgleichung. Vielleicht sind ja Spezialisten unter Euch, die das "noch" können, mir fehlt der nächste Schritt.

Die Gleichung die ich wahrscheinlich für das Projekt verwenden werde ist im Prinzip die Wärmeleitungsgleichung:

[latex]
\frac{\partial c(x,y,t)}{\partial t}= D \frac{\partial^{2} c(x,y,t)}{\partial\vec{r}^{2}}
[/latex]

Es geht um eine zweidimensionale Fläche (Rechteck) und die Frage, wie groß c am Ort (x,y) zu einer bestimmten Zeit t bei gegebenen Anfangsbedingungen ist (D sei unabhängig von x,y,t):

[latex]
0 \le x \le l_{x}
[/latex]

[latex]
0 \le y \le l_{y}
[/latex]

[latex]
c(0,y,t) = c_{ext}
[/latex]

[latex]
c(x,0,t) = c_{ext}
[/latex]

Anfangsbedingung:

[latex]
c(x,y,0) = c_{0}
[/latex]

Hat jemand einen Tipp für mich für den nächsten Schritt was zu tun wäre? Ich war noch nie ein großer Fan von partiellen Differentialgleichungen obgleich ich weiß, dass sie wichtig sind :)

Gruß aus Fürth in Mittelfranken,
Samoht

--
fl:| br:> va:) ls:< n4:( ss:) de:] js:| mo:}