@@var
Die Funktion, die ich versuche zu schreiben, soll demnach ausgehend von gewissen Parametern eine zufällige Flugbahn eines Objektes berechnen
Sowas wie die Brownsche Molekularbewegung?
Auch die Geschwindigkeit der Bewegung, beziehungsweise - als Option - die diesbezügliche Angabe eines Minimal- und eines Maximalwertes, innerhalb derer die Geschwindigkeit zufällig variieren kann, sollte natürlich festgelegt werden können,
Ich würde denken, die Beschleunigung variiert zufällig. Höchst unwahrscheinlich, dass die Geschwindigkeit von einem Iterationsschritt zum nächsten bspw. auf $$\vec v_{n+1}=-\vec v_n$$ springt.
Und da wäre wohl in Polarkoordinaten zu rechnen: Die Richtungsänderung wäre gleichverteilt, der Betrag der Beschleunigung invers-normal-verteilt?
sowie - optional - ein zeitlicher Endpunkt der Animation, an dem die Startkoordinaten wieder erreicht werden und ein neuer Iterationszyklus beginnen kann.
Bei einer zufälligen Bewegung wird äußerst unwahrscheinlich der Ausgangszustand (selber Ort und selbe Geschwindigkeit (vektoriell)) wieder erreicht werden.
LLAP 🖖
Ist diese Antwort anstößig? Dann könnte sie nützlich sein.